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The solid phase of soil consists of densely packed bound particles which were formed as the result of crystal growth, 
the cementation of deposits following lengthy filtration processes, and diffusion. The degree of packing of solid particles 
is related to the history of formation of the soil structure. Expansion as a result of microfracture and unpacking during 
deformation is the result of mechanical action. We assume that elastic deformation is negligibly small. To describe the 
deformation of the dense phase of soil under loads which act for a relatively short time and result in negligible creep we 
use the Mises limit condition and the associated deformation law [ 1] 

1/sljsl)  + aclh~/3 = k; (0.1) 

e i i =  ~(sij/V skzshl + ~61/3), ~, ~ O. (0.2) 

Here Sij is the deviator of the stress tensor Oij ; eij  is the strain rate; k and ot are respectively the coefficients of 
Coulomb cohesion and friction. 

Equations (0.1) and (0.2) show that the volume strain is always positive. However, the dilatational dependence for 
soils has a more complicated form, and therefore in tile structure of soil with a dense phase (0.1), (0.2), we consider the 
random distribution of pores. In this case the volume macrodeformations will depend on the predominance of one of 
these processes: expansion in the dense phase, or consolidation as a result of the decrease of the volume of pores existing 
at the beginning of deformation. We define the statistics of the pore distribution by the random function • which is 1 in 
the pore regions and 0 at the remaining points of the macrovolume V. The volume concentration of pores c is given. 

The diversity of properties and structures of the distribution of soil components requires the consideration of 
special theories. In the present case the assumptions made are sufficient to limit the applicability of the theory and the 
mathematical formulation of the problem of finding a relation between the macrostresses and macrostrains. 

Suppose forces Pi act on the surface S of the macrovolume V. We use the theorem of the minimum of the dissipa- 
tion rate [2] as applied to Eqs. (0.1) and (0.2). From the conditions for the minimum of a functional defined in the 
domain of the solid phase V2, 

k p  ,ds, (0.3) 

where eij is the deviator of the tensor ei~ in the class of kinematicaUy possible velocity fields v i satisfying in domain V 2 
the relation 

e~ = al/-eijsi~, (0.4) 

follow Eqs. (0.1) and (0.2), the equilibrium equations, and the boundary equations on S and on the surfaces of the pores. 

In the macrovolume V we consider statistically uniform fields • aii, and eij. We choose the volume V large enough, 
in the limit occupying all the space x i. Using the hypothesis of ergodicity of the fields, we calculate the average over the 
volume V, and denote by angle brackets 

v , 
V 

Since the ensemble average (mathematical expectation) is the same as the volume average, it can be shown that the 
average values of the integrals over the surface S divided by the volume V for a statistically uniform integrand approach 
zero as V ~ oo as the ratio of the area to the volume S/V. 

In the present case the variational formulation of the statistical problem presupposes the absence of a statistically 
uniform field of fluctuations v' for given (e~j>, which under condition (0.4) correspond to the minimum of the functional i 
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D = k ] / r ~ d V .  
V 2 

In this formulation there is an analogy with the corresponding plasticity theory problem [3]. 
the stresses (a,~) and the macrostrain rates (e~s) is determined by the relations 

( 0 . 5 )  

The relation between 

(a~j)  = OD/O(%), (0.6) 

which also are a consequence of the minimality of the functional (0.3). 

The subscripts 1 and 2 following the angle brackets denote averages over the pore regions V~ and the matrix V 2 , 
and a prime denotes fluctuations relative to the averages over the volume V. It is meaningful to consider the average 
(eis)t , since it follows from Gauss' theorem 

dS 
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that the value of (e~j)x is uniquely determined by the velocity of material particles on the surface of the pores S 1 (n i is 
the normal to the surface S 1 ). In particular, the following relations hold: 

t # (e i j ) l  = (eiD + (• % ) / c ,  (%) = e (%)1 + (i - -  c) (eis)~. (0.7) 

The dissipation function D depends on the volume concentration through c = (x) which is a parameter of the 
history of deformation with the initial value c o. Taking account of the change in the volumes V~ and V in the deforma- 
tion process, we obtain for the rate of change of the concentration c = V~/V the equation 

dc/dt = c ( ( e ~ ) l  - -  ( e ~ ) ) .  (0.8) 

1. From the integral inequalities there follow the estimates 

< V-~sa~>~ <~ V <a~se~s>~ = V(  <e~.~e~s> - -  c <a~jS~S> 1)/(1-c) ~< 

~< V(<elj~s> - c < e i t h < ~ i j > l ) / ( l  - c ) .  

(1.1) 

Independently of the inequalities (1.1) we make some estimates of the dissipation function of a macromedium 
D((e i j ) )  for arbitrary fixed values of (etj). The minimum value of the functional (0.5) for a constant concentration c 
depends on the geometrical structure of the region occupied by the solid phase, and varies from zero to a certain finite 
maximum value. It is clear that the dissipation function of the macrovolume is equal to zero if the solid particles are 
not bound, i.e., if they are suspended. 

We contrast this structure for equal Concentrations c with a certain optimally bound region of distribution of the 
solid phase which corresponds to the maximum value of the dissipation function D*((e ,s ) ) .  

We assume that there is an optimal structure of material for which the minimum value of the upper bound (1.1) of 
the functional (0.5) coincides with D*. Then for the assumed structure 

D = min [kV-t"~V-(eoei~)  - c (e~i)l(e~j)l] (1.2) 

under condition (0.4). 

Similar estimates are obtained in the theory of elastic composites in which a spherical form of inclusions or pores 
corresponds to the optimum structure of the material [4, 5]. We note that approximation (1.2) indirectly takes account 
of the binding of the solid phase region for which quantitative representations, for example for branched inclusions, inter- 
penetrating structures, do not exist so far. 

We minimize the functional (1.2) for arbitrarily specified statistically uniform fields ekk. Varying with respect to 
the fluctuations v~, and taking account of Eqs. (0.7) for (e~s)l ,  we obtain 

1 t t , 

- T  v~ , j -  ( % ) I  • § l,i = 0, 

where f' is the Lagrangian multiplier for the condition v'~,~ = eh~. 

�9 Assuming that ~' and e~ are statistically isotropic functions, we follow [3] and find 

, , e c (1 - c) ( e ~ j ) ~ ,  
(• e,j) = --5- (1.3) 
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r 2 , , , 2 < ( e h h )  >. <SijSij> = C (I - -  C )  <$iJ>l <aiJ>l T -~- 

Equations (0.7) and (1.3) lead to the relation 

<eu>~ = <e~>/[t - -  (2/5)(i - - c ) l ,  

and Eq. (1.2) takes the form 

(1.4) 

.,, 

D = [ V~-~--~ ]/ /  <(e~h)z>[; (1.5) 2 
I 

a = i - -  c / [ l  - -  (2/5)(1 - -  c)]; (1.6) 

t here minimization is performed with respect to e~  under condition (0.4). 

In domains V 1 and V 2 we take account of  the values of  e~  with an accuracy to within that of  the averages <ekh>~ 

and <e~h>~. We approximate the value of  <ehk>~ calculated from condition (0.4) by the relation for the averages over V z . 
Thus, 

ekh = <ehk>l• q- <ehk>2(l - -  x), (1.7) 

By using Eqs. (0.7) and (1.4), and taking account of  (1.7) we fred that 

= - - 

The formulas are less cumbersome if Eq. (1.6) is replaced by a = 1 - c; the difference between the two is shown in 
Fig. 1. 

I o After substitution of the values of  <(e~)-> the dissipation function (1.5) becomes 

2 - ~  (<eh~> - -  ~1/<e~> ~ ) ~ .  (1.8) 

In the deformation process there is a change in the concentration c determined by Eq. (0.8). Substitution of  Eqs. 

(1.9) 

(1.10) 

(0.7) and (1.7) into (0.8) gives 

dc/dt = (t - -  c)(<ehD --  czV <eu><eu>). 

The dissipation function (1.8) and Eq. (0.6) determine the limit equilibrium condition of  the soil [6] 

V<su><sij > -+- a<Ohh>/3 --  ]/k2(i - -  c) ~ --  c<oh~>'2/6 = 0 

and the associated law of deformation 

<eu> = 7.<siD/l/<s~z><s~>, )~ >~ O, 
(1.11) <e~> = )~(a + (t l2)c<okh>/l/  k~(t - -  c) ~ - -  c<z~>V6). 

In going from Eq. (1.8) for the dissipation function to Eqs. (1.10) and (1.11) the following features are revealed. 

Condition (1.10) holds under the restrictions 

3 . k i - - c  V - ~ ,  ~ = ~ z - ~ V  k 2 ( l - - c )  ~ Tco~. 01~< <~h)/3<~ o2, oi = --  V~ 

For values of the hydrostatic pressure 02 from (l.10) it follows that sij = 0, and in Eqs. (1.1 I) the values of <e~j> 
are indeterminate, corresponding to a conical point on the limit equilibrium surface. One should expect this singularity, 
since the conical point is determined as far back as the initial relations (0.I), (0.2). 

For pressures o 1 it follows from (1.11) that <eU)/<ehh > = 0 independently of  the values of  slj within certain limits. 

Hence we obtain <e~j) = 0 and (ehh> :5/= 0 . This case corresponds to a law of  deformation associated with the condition 
<~k> ----- 3~1 It can be shown that in (o~j) space the hyperplane <%~) = 3o 1 joins smoothly with the hypersurface (1.11). 
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These features become clear if we represent the surface D = const in eij space; then from condition (0.7) it follows 
that the conical point on file surface D = const corresponds to the flat part of the limit equilibrium surface, and the flat 
part to the conical point in oij space. 

In order to take account of the consolidation of softs and to 'preserve the associated law of deformation, phenomeno- 
logical theories close the limit equilibrium surface by a flat base corresponding to the value of akk at which the consofida- 
tion process begins [6, 7]. The present work shows that this assumption is not introduced arbitrarily. 

2. Lr us investigate some properties of softs determined by Eqs. (1.9)-(1.11). We consider the effect of hydrostatic 
pressfire o and the tangential stress s. Condition (1.10) takes the form 

Isl + c . r  - V k 2 ( t  - c)  ~ - 3ccr~ /2  = O. (2.1) 

In the o, s plane Eq; (2.1) describes a domain bounded by segments of elliptical curves (Fig. 2) and a rectilinear portion 
AB corresponding to the value a = a 1 . On the dashed lines the quantities in Eq. (2.1) become imaginary. 

Experimentally [8] determined domains of limit equilibrium have shapes similar to those shown in Fig. 2. 

The deformation properties of soil are important in calculating the penetration of landing gear. The depth of a rut 
depends on consolidation processes under the surface of a wheel and expansion conditions on the shoulders of the rut. In 
particular, the prediction of conditions for the landing of aircraft on natural softs is linked with studies of dftatational 
relations, which in a number of cases have a complicated form [9, 10]. The dilatational relations must take account of the 
change of the limit condition (2.1) in the deformation process with the use of Eq. (1.9). 

We investigate the change in volume strain e for a monotonic increase in the shear strain 7 at constant pressure a. 
It follows from Eq. (1.11) that:  

de/d '~  = r + ( 3 / 2 ) c c r / l / k 2 ( l  - -  c) ~ - -  3 c o ~ / 2 ,  (2.2) 

and Eq. (1.9) takes the form 

d c / d v  = (t --  c) (de /d~,  - -  a ) .  (2.3) 

Since the value of o is fixed, Eq. (2.1) determines the tangential stress s. Equations (2.2) and (2.3) can be integrated 
for a given initial deformation of the porosity %. We assume that the concentration of pores is small, and take account 
only of linear terms in it; then after integration of Eqs. (2.2) and (2.3) we obtain 

e = ~ v + c o \ e  ~ - -1  . 
(2.4) 

Figure 3 shows the dilatational curves (2.4) whose shape is characteristic for sandy softs [ 10, 11 ]. The effect of the 
transformation of consolidation into expansion processes for tr < 0 has been observed experimentally [10]. The initial 
relations (0.1) and (0.2) do not permit a description of steady-state processes with variable volume strains. 
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